GLYCEMIC PROFILE IN RATS AFTER PULMONARY ADMINISTRATION OF AN INSULIN DRY POWDER

Francesca Buttini^{1*}, Veronica Chierici¹, Eride Quarta¹, Lisa Flammini¹, Adryana Rocha Clementino¹, Andrea Grandi¹ Susanna Ecenarro², Massimiliano Tognolini¹, Elisabetta Barocelli¹, Paolo Colombo¹ & Ruggero Bettini¹

¹ Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124, Parma, Italy ² Qualicaps Europe, S.A.U., Alcobendas, Madrid, Spain

*Email: francesca.buttini@.unipr.it

INTRODUCTION

Afrezza[®] (Mannkind, US), is a powder for inhalation containing a 18% of recombinant human insulin and it is available in different IU strength. Afrezza[®] has to be stored at 2-8°C and it must be used within 72 hours from blister opening. A pure insulin pulmonary powder produced by spray drying (Ins_SD) was developed and patented by the Food and Drug Department, University of Parma [1,2]. In this powder, the percentage of decomposition products (A21, ORP and HMWP) was found to be below the USP limits (dotted line) for the 6 months of the investigation when the

EXPERIMENTAL METHODS

powder was filled in Quali-V[®]-I capsules, sealed in triflex blister and stored at room temperature (25°C-60% RH) [3].

The <u>aim of this study</u> was to investigate the chemical stability and respirability of an insulin spray-dried powder (Ins_SD) loaded in blister-packed capsules. The in vitro respirability of Ins_SD was compared to one of commercial products, Afrezza[®]. Finally, the glycemic plasma profile in rats was measured after pulmonary insufflation of Ins_SD and Afrezza[®] at a dose of 10 IU/Kg

(Büchi[®], CH). HPMC capsules size 3 (Quali-V[®]-I, Qualicaps Europe, ES) were semi-automatically filled with 2 mg of Ins_SD powder. The *in vitro* respirability was assessed using the Next Generation Impactor (NGI) (Copley Scientific, UK) and RSO1[®] high resistance inhaler (Plastiape, Italy) to aerosolize the formulation. The *in vivo* study was conducted in male Wistar rats (Charles River, LC, Italy) and the glycemic plasma profile (Glucose Oxidase Werfen) was determined after pulmonary insufflation of Ins_SD and Afrezza[®] powders. Ins_SD and Afrezza[®] were blended with mannitol spray dried (ins at 4% w/w) to achieve a mass of powder sufficient to be loaded in the device. The insulin powders were intratracheally (IT) administered (n=9) using a powder device DP-4 insufflator_TM (Penn-Century, Inc, US). For SC administration insulin was dissolved in 0.01 N HCI/saline 1:9 (solution pH= 4.7). Blood samples and BALF were collected at different time points after peptide administration and the pharmacokinetic profile (ELISA assay) and local inflammation of the powder were evaluated.

Figure 1.

A. The schematic process of powder dissolution, hexamers dissociation and monomers absorption across capillary membrane is reported.

B. HMWP content of insulin spray-dried powders INS_SD stored at room temperature (25 °C, 60% RH) for six months (mean \pm standard deviation, n = 3). USP limits are represented by the dotted lines.

RESULTS

RESPIRABILITY							INFLAMMATORY EVALUATION		
Table 1. Aerodynamic parameters of Ins_SD and Afrezza® powder (8 IU cartridge) (n=3).							MAR LE AND MARS		
	Metered Dose (mg)	Emitted Dose (mg)	MMAD (µm)	FPD (mg)	FPF (%)	A 7 6 7 ** 6 7 ** ## T → Ins_SD (10 U/Kg) → Afrezza [®] (10 U/Kg)	The share of		
Ins_SD	1.62 ± 0.08	1.50 ± 0.05	0.89 ± 0.09	1.37 ± 0.04	91.5 ± 5.9		the second with the		
Afrezza [®]	0.64 ± 0.00	0.60 ±0.00	3.19 ± 0.03	0.41 ± 0.01	68.3 ± 0.6		A CAR A CAR ALLAND		

Ins_SD powder showed a high respirability, considering that the delivered dose was >95% and the FPF<5 μ m of 91%. Afrezza® powder, tested for comparison, was successfully emitted from its Gen2 device (more than 95%) and FPF was 68.3%.

Figure 2. Scanning electron microscopy pictures of Afrezza[®] -mannitol (**A**) and Ins_SD-mannitol (**B**) powder blends.

** Ins_SD vs Afrezza®
Ins_SD vs Insulin

B

Figure 3. Insulin (**A**) and glucose level (**B**) in plasma of rats that received Ins_SD, Afrezza[®] and mannitol by pulmonary insufflation or insulin by subcutaneous. The insulin dose administered was 10 IU/Kg per animal. Data are expressed as mean ± SD (n=9). ***P<0.001, two-way Anova, Bonferroni post test. ##P<0.01; ### P<0.001 two-way Anova, Bonferroni post test.

Figure 4. Lung tissue 3h post administration of the different formulations (magnification: 20x hematoxylin-eosin). A: mannitol; B: insuline S.C.; C: Ins_SD;
D: Afrezza[®]. The histologycal analysis showed that there was no inflammation in the lung tissue after insulin administration.

Figure 5. Leukocytes profile (cell/ml x 10⁴) in the BALF (n=9) after intratracheal vs SC insulin administration. There is significant difference SC and intratracheal between groups (p < 0.01). The local inflammation was attributed to the mechanical

insertion of the device needle.

CONCLUSION

Ins_SD presented a very favourable respirability (FPF 91%). In vivo data showed that Ins_SD provided a rapid glucose reduction, similar to Afrezza[®]. Compared to Afrezza[®], Ins_SD showed a more rapid absorption, with a significantly higher C_{max} (P<0.01). As expected, both inhaled insulin powders were more rapidly bioavailable than SC Ins, and more rapidly eliminated. Moreover, SC Ins showed a higher AUC with respect to IT administered powders, resulting in a longer lasting hypoglycaemic effect due to the prolonged insulin concentration in the plasma.

REFERENCES

[1] Cagnani, S., Colombo, P., Ventura, P., 2004. Insulin highly respirable microparticles. Assignee: University of Parma; US Patent Number: 7625865 B2.
 [2] A.G. Balducci, et al., Pure Insulin Highly Respirable Powders for Inhalation, Eur J Pharm Sci. 51 (2013) 110–117.
 [3] Buttini F, et al. Investigation of Physicochemical Stability of a Pure Insulin Spray-dried Powder for Inhalation Semi-automatically Filled in Quali-V-I Capsules. Respiratory Drug Delivery Europe 2017.

DDL2018 DRUG DELIVERY TO THE LUNGS, EDINBURGH, SCOTLAND UK, DECEMBER 12-14, 2018

