BACKGROUND

The use of hard capsules in dry powder inhalers (DPI) to deliver formulations to the lung has been in use since 1970. However, pharmaceutical companies started to manufacture more complex delivery systems, such as powder depot devices or powder dispensed from blisters, but their complexity tended to make them less patient friendly. Lately there has been an interest in returning to capsules based systems because they are patient friendly; simple to formulate, cheap to manufacture and the patient can see when the dose has been taken.

The original inhalation grade hard capsules were made from gelatin, which becomes brittle when exposed to low humidities. Inhalation grade hypromellose capsules have been developed in the last few years to overcome this problem because water does not act as a plasticizer in their structure. Little has been published that compares the properties of the two types of capsule, except for studies that have measured their puncturing in DPI, which showed that hypromellose capsules had better performance. In this investigation we compare the effects of capsule properties on the aerosolisation of powders from DPIs.

AIM

The aim of this study was to compare the aerosolisation properties (emitted dose (ED), fine particle fraction (FPF)) and the mass median aerodynamic diameter (MMAD) of a typical powder formulation (binary mixture of salbutamol sulphate and lactose) from two different types of capsule compared with the 8-pin DPI device (p<0.05 per Student's t-test with two-tailed comparison). In addition, the 2-pin DPI device produced significantly lower MMAD for hypromellose capsules compared to gelatin capsules and the fine particle dose and FPF were greatest from gelatin capsules compared with the 8-pin DPI device. This demonstrates that Quali-V®-I hypromellose capsules are better for use in powder inhalers than gelatin capsules.

MATERIALS AND METHODS

Inhalation grade lactose (Rhatex, SME Technology) was fractionated to give particles of 50-125 µm and blended (Turbofluid orbital mixer (Glen Mills, Clifton, New Jersey)) for 30 min at 46 rpm with micronized Salbutamol sulphate in a ratio of 50:1 (w/w).

20 ± 1 mg of this blend was filled into size 3 inhalation grade gelatin and hypromellose (Quali-V®-I) capsules (Qualicaps Europe, S.A.U.) and stored in a humidity chamber (Sanjoy Atmos Chamber) at 22ºC 40% RH for 4 weeks (n=3) to standardise the capsules before testing.

The filled capsules were tested at weekly intervals, up to 4 weeks, by puncturing them in two DPI devices (2 or 8 puncturing pins) (Plastilute, Milano, Italy), see Figure 1, and aerosolised into a next generation cascade impactor (NGI) operated at a fine rate of 60 L/min for 4 s.

Salbutamol was collected from the capsule, inhaler, mouthpiece, adaptor and NGI stages using distilled water and analysed by HPLC (Agilent Technologies) using a Kinetex C-18 column (50 x 4,7 mm i.d. packed with 2.6 mm Phenomenex(UK), mobile phase: methanol and 0.25% (w/v) 1-heptane sulphonic acid sodium salt (45:55 v/v), flow rate: 1 mL/min, injection volume: 10 µL, temperature: 25º C and wavelength of 200 nm. The retention time for Salbutamol was 1.5 min and the limits of detection and quantification were 0.19 and 0.57 µg/mL respectively.

The ED (µg) was calculated as the total mass of drug depositing in the mouthpiece, inhaler, in addition, the 2-pin DPI device produced significantly lower MMAD for hypromellose capsules compared to gelatin capsules (p<0.05 paired Student’s t-test with two-tailed comparison), see Figures 2 B & C.

The MMAD of Salbutamol emitted from hypromellose capsules was significantly lower than gelatin capsules using the 2-pin and 8-pin DPI devices at weeks 1 – 4 (p<0.05 per Student’s t-test with two-tailed comparison), see Figure 2 D.

RESULTS

The FPD (µg) and FPF (%) showed a significantly greater value from the hypromellose capsules compared with the 8-pin DPI device at weeks 2, 3 & 4 compared to gelatin capsules (p<0.05 paired Student’s t-test with two-tailed comparison), see Figures 2 B & C.

The MMAD of Salbutamol emitted from hypromellose capsules was significantly lower than gelatin capsules using the 2-pin and 8-pin DPI devices at weeks 1 – 4 (p<0.05 per Student’s t-test with two-tailed comparison), see Figure 2 D.

CONCLUSIONS

The results show that the FPD are greater and the MMAD are lower for hypromellose capsules compared to gelatin capsules and the fine particle dose and FPF were greatest from the 8-pin inhaler with hypromellose capsules. This demonstrates that Quali-V®-I hypromellose capsules have better properties for use in powder inhalers than gelatin capsules.

BIBLIOGRAPHY


ACKNOWLEDGEMENTS

Dr Imran Saleem would like to acknowledge Qualicaps Europe, S.A.U. for funding this work. We would like to thank Jose Luis Encinas of Qualicaps Europe, S.A.U. for taking the photographs of the inhalers.